Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structure Improvement and Joint Resistance Estimation in Demountable Butt and Edge Joints of a Stacked REBCO Conductor Within a Metal Jacket

Identifieur interne : 000468 ( Main/Repository ); précédent : 000467; suivant : 000469

Structure Improvement and Joint Resistance Estimation in Demountable Butt and Edge Joints of a Stacked REBCO Conductor Within a Metal Jacket

Auteurs : RBID : Pascal:13-0241246

Descripteurs français

English descriptors

Abstract

Electrical (mechanical) butt and edge joints of a stacked REBCO conductor within a metal jacket have been investigated as candidates for demountable (remountable) electrical joints within demountable high-temperature superconducting magnets. This paper summarizes recent progress in the R&D of the two electrical joints. First, we have described recent R&D for the butt joint. We have previously established fabrication methods for the butt joint samples. In this paper, we have tried to establish a predictive method of joint resistance for a large-scale stacked REBCO conductor within a metal jacket by using small-scale experiments and current distribution analyses. For this purpose, we evaluated joint resistivity, particularly in the butt joint where an indium film is inserted between joint surfaces. Based on the small-scale experiments and 3-D current distribution analyses, the joint resistivity between the contact surface and the indium film inserted into the joint section is evaluated to be 1.1 × 10-12 Ωm2. According to the discussion based on the results, the joint resistance for a 100-kA-class REBCO conductor is estimated to be 3.7 nΩ, which is a reasonably acceptable value from the viewpoint of electric power for cooling. Second, we recapitulate present R&D for the edge joint. In the case of the edge joint, adequate methods for fabricating samples had not been established because this joint has only been recently proposed. In a previous study, the experimentally measured joint resistance of the edge joint was much higher than predicted. We expect that the reason for the discrepancy is degradation of the conductor edge during the fabrication process and strains due to forces during the joint test. In addition, poor fabrication of the joint faces resulted in limited local area contact across the joint. In this paper, we improved the methods of fabrication and the structure of the test conductors based on numerical analysis. We then carried out a testing program of the edge joint of a stacked GdBCO conductor within a copper jacket fabricated with the improved process. The experimentally evaluated joint resistance agreed with numerical predictions. Therefore, the satisfactory performance of the edge joint was demonstrated in this paper.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0241246

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Structure Improvement and Joint Resistance Estimation in Demountable Butt and Edge Joints of a Stacked REBCO Conductor Within a Metal Jacket</title>
<author>
<name sortKey="Ito, Satoshi" uniqKey="Ito S">Satoshi Ito</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University</s1>
<s2>Sendai 980-8579</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Sendai 980-8579</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ohinata, Tatsuya" uniqKey="Ohinata T">Tatsuya Ohinata</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University</s1>
<s2>Sendai 980-8579</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Sendai 980-8579</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bromberg, Leslie" uniqKey="Bromberg L">Leslie Bromberg</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Plasma Science and Fusion Center, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hashizume, Hidetoshi" uniqKey="Hashizume H">Hidetoshi Hashizume</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University</s1>
<s2>Sendai 980-8579</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Sendai 980-8579</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0241246</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0241246 INIST</idno>
<idno type="RBID">Pascal:13-0241246</idno>
<idno type="wicri:Area/Main/Corpus">000A39</idno>
<idno type="wicri:Area/Main/Repository">000468</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1051-8223</idno>
<title level="j" type="abbreviated">IEEE trans. appl. supercond.</title>
<title level="j" type="main">IEEE transactions on applied superconductivity</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Butt joint</term>
<term>Contact surface</term>
<term>Cooling</term>
<term>Cooling system</term>
<term>Current distribution</term>
<term>Damaging</term>
<term>Degradation</term>
<term>Electric power</term>
<term>Experimental study</term>
<term>High temperature superconductor</term>
<term>Large scale</term>
<term>Manufacturing process</term>
<term>Numerical method</term>
<term>Parameter estimation</term>
<term>Performance evaluation</term>
<term>Power cables</term>
<term>Power device</term>
<term>Power electronics</term>
<term>Research and development</term>
<term>Resistivity</term>
<term>Small scale structure</term>
<term>Stacking</term>
<term>Superconducting magnet</term>
<term>Thermal management (packaging)</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Estimation paramètre</term>
<term>Assemblage bout à bout</term>
<term>Empilement</term>
<term>Electroaimant supraconducteur</term>
<term>Recherche et développement</term>
<term>Echelle grande</term>
<term>Structure petite échelle</term>
<term>Etude expérimentale</term>
<term>Distribution courant</term>
<term>Résistivité</term>
<term>Surface contact</term>
<term>Puissance électrique</term>
<term>Système refroidissement</term>
<term>Refroidissement</term>
<term>Endommagement</term>
<term>Dégradation</term>
<term>Procédé fabrication</term>
<term>Méthode numérique</term>
<term>Evaluation performance</term>
<term>Dispositif puissance</term>
<term>Câble transport énergie</term>
<term>Supraconducteur haute température</term>
<term>Gestion température packaging électronique</term>
<term>Electronique puissance</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Recherche et développement</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Electrical (mechanical) butt and edge joints of a stacked REBCO conductor within a metal jacket have been investigated as candidates for demountable (remountable) electrical joints within demountable high-temperature superconducting magnets. This paper summarizes recent progress in the R&D of the two electrical joints. First, we have described recent R&D for the butt joint. We have previously established fabrication methods for the butt joint samples. In this paper, we have tried to establish a predictive method of joint resistance for a large-scale stacked REBCO conductor within a metal jacket by using small-scale experiments and current distribution analyses. For this purpose, we evaluated joint resistivity, particularly in the butt joint where an indium film is inserted between joint surfaces. Based on the small-scale experiments and 3-D current distribution analyses, the joint resistivity between the contact surface and the indium film inserted into the joint section is evaluated to be 1.1 × 10
<sup>-12</sup>
Ωm
<sup>2</sup>
. According to the discussion based on the results, the joint resistance for a 100-kA-class REBCO conductor is estimated to be 3.7 nΩ, which is a reasonably acceptable value from the viewpoint of electric power for cooling. Second, we recapitulate present R&D for the edge joint. In the case of the edge joint, adequate methods for fabricating samples had not been established because this joint has only been recently proposed. In a previous study, the experimentally measured joint resistance of the edge joint was much higher than predicted. We expect that the reason for the discrepancy is degradation of the conductor edge during the fabrication process and strains due to forces during the joint test. In addition, poor fabrication of the joint faces resulted in limited local area contact across the joint. In this paper, we improved the methods of fabrication and the structure of the test conductors based on numerical analysis. We then carried out a testing program of the edge joint of a stacked GdBCO conductor within a copper jacket fabricated with the improved process. The experimentally evaluated joint resistance agreed with numerical predictions. Therefore, the satisfactory performance of the edge joint was demonstrated in this paper.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1051-8223</s0>
</fA01>
<fA03 i2="1">
<s0>IEEE trans. appl. supercond.</s0>
</fA03>
<fA05>
<s2>23</s2>
</fA05>
<fA06>
<s2>3</s2>
<s3>p. 2</s3>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Structure Improvement and Joint Resistance Estimation in Demountable Butt and Edge Joints of a Stacked REBCO Conductor Within a Metal Jacket</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>THE 2012 APPLIED SUPERCONDUCTIVITY CONFERENCE Portland, OR, USA, October 7-12, 2012 LARGE SCALE</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>ITO (Satoshi)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>OHINATA (Tatsuya)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BROMBERG (Leslie)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HASHIZUME (Hidetoshi)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University</s1>
<s2>Sendai 980-8579</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Plasma Science and Fusion Center, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>Institute of Electrical and Electronics Engineers (IEEE)</s1>
<s2>New York, NY</s2>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>48024.1-48024.8</s2>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22424</s2>
<s5>354000503850702010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>15 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0241246</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE transactions on applied superconductivity</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Electrical (mechanical) butt and edge joints of a stacked REBCO conductor within a metal jacket have been investigated as candidates for demountable (remountable) electrical joints within demountable high-temperature superconducting magnets. This paper summarizes recent progress in the R&D of the two electrical joints. First, we have described recent R&D for the butt joint. We have previously established fabrication methods for the butt joint samples. In this paper, we have tried to establish a predictive method of joint resistance for a large-scale stacked REBCO conductor within a metal jacket by using small-scale experiments and current distribution analyses. For this purpose, we evaluated joint resistivity, particularly in the butt joint where an indium film is inserted between joint surfaces. Based on the small-scale experiments and 3-D current distribution analyses, the joint resistivity between the contact surface and the indium film inserted into the joint section is evaluated to be 1.1 × 10
<sup>-12</sup>
Ωm
<sup>2</sup>
. According to the discussion based on the results, the joint resistance for a 100-kA-class REBCO conductor is estimated to be 3.7 nΩ, which is a reasonably acceptable value from the viewpoint of electric power for cooling. Second, we recapitulate present R&D for the edge joint. In the case of the edge joint, adequate methods for fabricating samples had not been established because this joint has only been recently proposed. In a previous study, the experimentally measured joint resistance of the edge joint was much higher than predicted. We expect that the reason for the discrepancy is degradation of the conductor edge during the fabrication process and strains due to forces during the joint test. In addition, poor fabrication of the joint faces resulted in limited local area contact across the joint. In this paper, we improved the methods of fabrication and the structure of the test conductors based on numerical analysis. We then carried out a testing program of the edge joint of a stacked GdBCO conductor within a copper jacket fabricated with the improved process. The experimentally evaluated joint resistance agreed with numerical predictions. Therefore, the satisfactory performance of the edge joint was demonstrated in this paper.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D05G01</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03D</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D05H</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D05G04</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Estimation paramètre</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Parameter estimation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Estimación parámetro</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Assemblage bout à bout</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Butt joint</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Junta plana</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Empilement</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Stacking</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Apilamiento</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Electroaimant supraconducteur</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Superconducting magnet</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Electroimán supraconductor</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Recherche et développement</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Research and development</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Investigación desarrollo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Echelle grande</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Large scale</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Escala grande</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Structure petite échelle</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Small scale structure</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Estructura pequeña escala</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Etude expérimentale</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Experimental study</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Estudio experimental</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Distribution courant</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Current distribution</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Distribución corriente</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Résistivité</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Resistivity</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Resistividad</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Surface contact</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Contact surface</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Superficie contacto</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Puissance électrique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Electric power</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Potencia eléctrica</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Système refroidissement</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Cooling system</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Sistema enfriamiento</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Refroidissement</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Cooling</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Enfriamiento</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Endommagement</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Damaging</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Deterioración</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Dégradation</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Degradation</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Degradación</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Procédé fabrication</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Manufacturing process</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Procedimiento fabricación</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Méthode numérique</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Numerical method</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Método numérico</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Dispositif puissance</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Power device</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Dispositivo potencia</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Câble transport énergie</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Power cables</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Supraconducteur haute température</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>High temperature superconductor</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Supraconductor alta temperatura</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Gestion température packaging électronique</s0>
<s5>46</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Thermal management (packaging)</s0>
<s5>46</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Electronique puissance</s0>
<s5>47</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Power electronics</s0>
<s5>47</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Electrónica potencia</s0>
<s5>47</s5>
</fC03>
<fN21>
<s1>224</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>The 2012 Applied Superconductivity Conference</s1>
<s3>Portland, OR USA</s3>
<s4>2012-10-07</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000468 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000468 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0241246
   |texte=   Structure Improvement and Joint Resistance Estimation in Demountable Butt and Edge Joints of a Stacked REBCO Conductor Within a Metal Jacket
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024